Ph.D, Principal investigator
Modulation of synaptic transmission and its dysfunction in mental diseases
Office Phone: 
Lab Website: 



Synapse is one of the most important structures where neurons communicate with each other and neuronal circuit is formed. Synaptic plasticity is a general hardware implementation of learning and adaptation in the nervous system. Representation of the changing world and algorithms for adaptations are encoded in the diversity and complexity of synaptic plasticity. The ultimate goal of brain science is to understand the computation and its algorithms. Since we don't have a framework to start with on the computation, we started from analyzing the hardware. Synapse and its plasticity are the ubiquitous hardware in the nervous system. In addition, synapse and its plasticity underlie the majority of neuronal diseases, like developmental disorder, mental disorder and aging. Therefore, understanding synaptic plasticity and its modulation will contribute to both brain science and medicine. Our research group focuses on the modulatory factors that contribute to the diverse behaviors of synapses in physiological conditions, as well as in disease conditions.


2019-2020   Professor, School of Life Science, University of Science and Technology of China

2014-2019   Associated Professor, School of Life Science, University of Science and Technology of China

2011-2014   PostDoc Researcher, Marie Curie Fellow, The French National Centre for Scientific Research (CNRS)

2005-2010   PhD in Neuroscience, Max Planck Institute for Biophysical Chemistry, University of Goettingen, Germany

2002-2005   Master student in Physics, Tsinghua University, Beijing

1997-2002   Bachelor student in Biomedical Engineering, Zhejiang university, Hangzhou

Selected publications

  1. Hu JX, Shi YM, Zhang JM, Huang XF, Wang Q, Zhao H, Shen JW, Chen ZP, Song W, Zheng P, Zhan SL, Sun YP, Cai PF, An K, Ouyang CJ, Zhao BZ, Zhou QX, Xu L, Xiong W, Zhang Z, Meng JJ, Chen JT, Ma YQ, Zhao H, Zhang M, Qu K, Hu J, Luo MH, Xu FQ, Chen XW, Xiong Y, Bao J*, Xue T* Melanopsin retinal ganglion cells mediate light-promoted brain development. Cell. 2022 Aug 18;185(17):3124-3137.

  2. Bao J, Graupner M, Astorga G, Collin T, Jalil A, Indriati DW, Bradley J, Shigemoto R and Llano I (2020). Synergism of type 1 metabotropic and ionotropic glutamate receptors in cerebellar molecular layer interneurons in vivo. eLife, 9, e56839

  3. Ma Y#, Bao J#*, Zhang Y#, Li Z, Zhou Z, Zhou X, Wan C, Huang L, Zhao Y, Han G*, Xue T*. Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae. Cell, 2019, 177(2): 243-255

  4. Cheng J, Huang X, Liang Y, Xue T, Wang L*, Bao J*. Plasticity of Light-induced Concurrent Glutamatergic and GABAergic Quantal Events in the Suprachiasmatic Nucleus, Journal of Biological Rhythms, 2018, 33(1):65-75

  5. Astorga G, Bao J,Franconville R, Jalil A, Bradley J, Llano I. An excitatory GABA loop operating in vivo. Frontiers in Cellular Neuroscience, 2015, 9, 275.

  6. Huang CH, Bao J,and Sakaba T. Multivesicular Release Differentiates the Reliability of Synaptic Transmission between the Visual Cortex and the Somatosensory Cortex. Journal of Neuroscience, 2010, 30:11994 – 12004.

  7. Bao J*, Reim K, Sakaba T*. Target-dependent feed-forward inhibition mediated by short-termsynaptic plasticity in the cerebellum. Journal of Neuroscience, 2010, 30:8171-8179. 

  8. Bibitchkov D, Bao J, and Neher E. Information transmission by synapses with short-term synaptic plasticity. BMC Neuroscience, 2007, 8(Suppl 2), P90.